Maria Manuela Portela, Instituto Superior Técnico, Universidade de Lisboa, CERIS, Portugal

Droughts are among the most complex and least understood natural hazards, affecting more people than any other one. They are also recurrent hazards particularly in areas with pronounced natural hydrological temporal variability.
\checkmark Droughts are generally associated with persistence of low rainfall, soil moisture and water availability relative to the normal levels.

(common definition)... DROUGHT \downarrow a sustained and regionally extensive occurrence of below average natural water availability ...

\checkmark Although a drought can last for months to years they should not be confused with aridity
\checkmark Aridity is a permanent feature of the climate characterized by low rainfall

\checkmark Different from other extreme events, like floods and earthquakes, droughts remain a less visible natural risk, whose impacts are not systematically recorded
\checkmark They develop cumulatively and quietly and by the time they are noticed it is often to late to act

It is common to distinguish different types of droughts, according to their consequences and to the "water resources reservoir" affected by the water shortness (at the watershed level):
\checkmark Meteorological drought
\checkmark agricultural
\checkmark hydrological
\checkmark socioeconomic

\checkmark In Portugal droughts are recursive occurrences. One of the major events took place in 2005, with about 80% of the country experiencing the worst drought since 1943/1944, with estimated associated costs of more than 285 million Euros.

\checkmark In average, from 75% to 90% of the precipitation occurs from October to March (wet semester). The mean annual precipitation varies from more than 2800 mm, in the north-western region, to less than $\mathbf{4 0 0} \mathbf{~ m m}$, in the southern region, following a complex spatial pattern in close connection with the relief
\checkmark The natural temporal variability of the precipitation results in frequent water shortages, posing a great threat to nature, quality of life and economy and originating conflicts among competing water uses
\checkmark The characterization of the droughts uses indexes derived based from long-term time series of rainfall but also of other hydrological variables (temperature, streamflow) depending on the index applied
\checkmark One of the most common drought index is the Standardized Precipitation Index, SPI
\checkmark The SPI can be computed at different time scales - 1, 3 (meteorological droughts) , 6, 12 (hydrological drought) or 24 months - by adjusting a statistical law to the rainfall series at the considered time scale
\checkmark The Pearson Type III distribution with parameters given by the L-moments

$$
P_{i} \quad \sum_{i} P_{i} \quad \sum_{i}^{i+2} P_{i}
$$

For the observed rainfall in a given month - or for cumulative rainfall in a given period, depending on the time scale adopted in accordance with the type of drought being characterized - the value of SPI is equal to the standard normal, z, for the non-exceedance probability, F, that corresponds to such rainfall, according to the Pearson Type III distribution,

is swarm

Inversion of the
statistical law and statistical law and
assignment to each sample point of its nonexceedance probability, F

is swarm

In a given rain gauge (or homogenous region)

Droughts categories (Agnew, C. T. 2000, "Using the SPI to identify drought", Drought Network News, 12, 6-12)

Non-exceedance probability, F	SPI	Drought category
0.05	>1.65	Extremely wet
0.1	>1.28	Severely wet
0.2	>0.84	Moderately wet
0.6	>-0.84 and <0.84	Normal
0.2	<-0.84	Moderate Drought
0.1	<-1.28	Severe Drought
0.05	<-1.65	Extreme Drought

Sequence of SPI, drought threshold and droughts occurences for such threshold.
dit

Droughts categories (Agnew, C. T. 2000, "Using the SPI to identify drought", Drought Network News, 12, 6-12)

Non-exceedance probability, F	SPI	Drought category
0.05	>1.65	Extremely wet
0.1	>1.28	Severely wet
0.2	>0.84	Moderately wet
0.6	>-0.84 and <0.84	Normal
0.2	<-0.84	Moderate Drought
0.1	<-1.28	Severe Drought
0.05	<-1.65	Extreme Drought

Representation of a sequence of SPI, the drought threshold (\sim) and the drought occurences for such threshold (哉).

\checkmark Basically, the SPI quantifies the precipitation deficit at different time scales (from 1 to 24 months), which reflect the impact of droughts on the different types of reservoirs of fresh water at the watershed level (atmosphere, rivers, soil, artificial reservoir, ground water ... society)

Characteristics of the droughts

$\checkmark \quad . . .$. based on the results from the inversion of the SPIs \square maps with the spatial distribution of the precipitation in 1, 3, 6, 12 and 24 months for different droughts thresholds: if in a certain location the precipitation that occurred in any of the considered time intervals falls below the value given by the map, then a drought is occurring (... severe or extreme according to the threshold to which the map relates)

Surfaces of monthly and cumulative precipitation thresholds for drought recognition

Surfaces of monthly precipitation in the successive periods of 3 consecutive months
(beginning in each one of the months of the civil year) for recognition of severe droughts
(SPI3=-1.28)

M.M.Portela (Jan Feb/2022) ---- 23

Surfaces of monthly precipitation in the successive periods of 6 consecutive months
(beginning in each one of the months of the civil year) for recognition of severe droughts
(SPI6=-1.28)

M.M.Portela (Jan Feb/2022) ---- 25

Surfaces of monthly precipitation in the successive periods of 12 consecutive months
(beginning in each one of the months of the civil year) for recognition of severe droughts
(SP112=-1.28)

February to January
(...period of 12 months ... severe drought)

29

31

Drought probability (-)
$0.0-0.1$
$0.1-0.2$
$0.3-0$.
$0.4-0.5$
$0.6-0.7$
$0.7-0.8$
$0.8-0.9$

Rain gauge

- Without drought
- With drought

Example of the application of the system developed for continuous monitoring of the likelihood of moderate drought at the end of the six months period from October 2012 to February 2013. Drought probability from the end of October $(n=1)$ to the end of February (n

$$
=5) . \text { The last map identifies the }
$$

rain gauges that in fact did or did not experience drought by the end of March of 2013
\checkmark To analyze the frequency of the droughts and approach applicable to partial duration series, PDS, also known as peaks over threshold series, POT, (series built upon occurrences that are irregular in time by opposition to the annual maxima series that are built upon occurrences regularly spaced in time, namely one value per year) can be used: the nonparametric method developed by Diggle, 1985 for smoothing point process data, i. e., the Kernel occurrence rate estimation, KORE (estimativa de densidade kerne).
\checkmark The KORE estimator indicates, continuously over time, the expected number of events per year above a given threshold, i.e., the frequency

Diggle, P.: A kernel method for smoothing point process data, J. Roy. Stat. Soc. C-App., 34, 138-147, 1985. (1985)

$1950 \quad 1960 \quad 1970 \quad 1980 \quad 1990 \quad 2000$ Time
\checkmark The bandwidth, h, is a smoothing factor. The higher h is, the more attenuated are the results because more instants are considered in the KORE calculation).
... the superimposition of the kernels give the KORE

To quantify the uncertainties associated with the results of the KORE, a 90% confidence band should be constructed around each frequency estimate by means of bootstrap simulations (with replacement)

\checkmark Drought frequency analysis based on the KORE

However, droughts are regional occurrences, affecting large areas and with specific characteristics in each of those areas
\checkmark To identify spatially homogenous regions with similar specific characteristics of the droughts and to understand these characteristics - that is, to identify the different spatial patterns of the droughts - regionalization techniques, as presented in the following presentation (principal component analysis, PCA, non-hierarchical cluster analysis,)

